If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2-40=0
a = 64; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·64·(-40)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*64}=\frac{0-32\sqrt{10}}{128} =-\frac{32\sqrt{10}}{128} =-\frac{\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*64}=\frac{0+32\sqrt{10}}{128} =\frac{32\sqrt{10}}{128} =\frac{\sqrt{10}}{4} $
| -8(2e+2)=16 | | 3(2x-8)=2(4x) | | 5(e-2)=-40 | | 10(e-10)=-156 | | 5(e+1)=0 | | 6(4e+7)=90 | | (e-6)*9=72 | | (e-6)*8=72 | | (e-10)*6=60 | | 8x+31=-7(x+2) | | 2(-3+2)-2m=-12-m | | F(x)=x2+10x+64 | | 37-x=2x13 | | (9+1y)(5y+7)=0 | | -8-2y=3y-12 | | -11=4y-6 | | 2x+5x+7+3x=10 | | 4(y+3)=6y-1 | | (a+3)(a^2-3a+9)=0 | | 5x-40=2x+9 | | 8-(-3f)=19.1 | | 8y-(-8)=56 | | 4u+48=-8(u-3) | | -2(w-1)=8w+12 | | -4x+40=4(x+8) | | 10(z-91)=50 | | 95=8y+31 | | -3y+6(y+3)=24 | | -16=7(v-4)-4v | | -3=4(x+6)+5x | | 252-y=1 | | 192=26-w |